Luminescent materials, recognition phases of the chemical sensors and heterogeneous catalysts prepared by sol–gel method

ANDRZEJ M. KŁONKOWSKI

Faculty of Chemistry, University of Gdaňsk, 80-952 Gdaňsk, Poland

The sol–gel process enables one to prepare oxide xerogels at room temperature. By using this method, it is possible to encapsulate a wide variety of organic, complex (organometallic) molecules and metallic nanoparticles stabilized by organic ligands in the inorganic or inorganic/organic hybrid matrix. The studies of this new type of inorganic/organic composite have evolved towards the deliberate doping of the supramolecular species. This review gives three examples of how doped xerogel materials prepared by the sol–gel method are emerging as an important means of producing new materials. The first part of this review is devoted to luminescent materials which are based on the antenna effect and are composed of Eu(III) complex (luminescence centre) entrapped in xerogel matrix. In this case, the results of the experiments concerning the co-ordination sphere composition show that a cryptand ligand with aromatic groups and an aromatic co-ligand, settle efficient action the antenna effect and isolate the central ion from each efficient quenchers, as e.g. water molecules. Secondly, silica xerogel samples with entrapped series of three fluorescent chemosensors of the Ant-R-Ant type, where Ant is an anthryl group and R is a receptor (spacer) with donor atoms, were prepared as chemical recognition phases. The recognition phase with fluorosensor of the type Ant-N-O-O-N-Ant, where N and O are donor atoms, can be regenerated many times and seems to be most promising system for the fluorescent chemical sensor. In the third part of this paper, ligand protected metal nanoclusters as immobilized catalysts are the point of interest. Such heterogeneous catalysts are much less investigated than the bare metal particles on supports. The main interest is focused on the function of the ligands.

Key words: sol–gel, xerogel, ligand, organometallic compounds

1. Introduction

The synthesis of materials by the sol–gel process generally involves the use of metal alkoxides or organical derivatives of these alkoxides which undergo hydrolysis and condensation polymerisation reactions to give alcogel and then xerogel after drying. The synthesis of oxides and organically modified oxides by this approach has been a subject of several books and reviews [1–4].

*The paper presented at the International Conference on Sol–Gel Materials, SGM 2001, Rokosowo, Poland.
The method has received considerable attention because it possesses a number of desirable characteristics. It enables one to prepare glasses at far lower temperatures than it is possible by using conventional melting. Compositions which are difficult to obtain by conventional means because of volatilisation, high melting temperatures or crystallization problems can be produced. In addition, the sol–gel method is a high-purity process which leads to excellent homogeneity. Finally, the sol–gel approach is adaptable to producing bulk pieces as well as films and fibres.

During the past ten years it has been widely recognized that the sol–gel process may be used to encapsulate organic and organometallic molecules as well as metallic nanoclusters in an inorganic or inorganic/organic hybrid medium. It is now evident that the synthesis of these types of xerogels is not limited to just a few substances. The flexible solution chemistry and the ability to prepare a matrix with little or no heating means that the sol–gel approach is compatible especially with a wide variety of organic molecules. In general, the list of dopants in this case is constantly expanding [5].

Prior to the sol–gel methods, the incorporation of organic, organometallic and metallic species in solids generally was restricted to the use of frozen solvents or organic polymer matrices. The present approach represents a totally new type of inorganic/organic composite material because the oxide skeleton not only offers a significantly more ionic environment but also is thermally, chemically and dimensionally more stable. Thus, studies of organic, organometallic or metallic doped xerogels have begun to develop substantial breadth; from investigations of doped xerogels for luminescent materials, to the development of recognition phases of optical chemical sensors and heterogeneous catalysts.

2. Luminescent materials

Materials containing lanthanide ions have been used as phosphors and laser materials because of their sharp, intensely luminescent f–f electronic transitions. In particular, a number of lanthanide complexes showed a bright and narrow lanthanide ion emission. These emissions usually resulted from the so-called “antenna effect” which is defined as a light conversion process via an absorption–energy transfer–emission sequence involving distinct absorbing by a ligand (light collector) and emitting by a metal ion. In such a process, the quantities that contribute to the luminescence intensity are: (i) the intensity of the ligand absorption, (ii) the efficiency of the ligand-to-metal energy transfer, and (iii) the efficiency of the metal luminescence (Fig. 1).

This phenomenon has been reviewed by Sabbatini et al. [6]. The luminescence properties of lanthanide complexes in a variety of solutions have extensively been investigated [7–11] which demonstrated that lanthanide complexes have superior fluorescence properties with respect to simple salts in solutions. However, conventional ligands are not able to give rise to inert complexes, especially in aqueous solution, where solvent molecules efficiently compete to occupy co-ordination sites. In fact, the cryptand ligands possess spheroidal cavities and donors atoms, like oxygen...
Materials prepared by sol–gel method

and nitrogen. This type of ligands makes very stable complexes with lanthanide ions and is able to shield the encapsulated ion from interaction with surrounding.

Fig. 1. Schematic representation of the antenna effect involving absorbing ligand and emitting metal subunits [6]

In order to increase the intensity of the lanthanide luminescence exploiting the antenna effect, complexes with strongly absorbing cryptands have been designed, e.g. cryptands with aromatic segments, such as 2,2′-bipyridine (bpy), 1,10-phenantroline (phen) or 3,3′-bisisoquinoline (biq), which show intense absorption bands in the UV region due to $\pi-\pi^*$ transitions.

In attempt to improve the luminescence properties of Eu(III) cryptates, the bpy or biq units of cryptands were replaced with bpyO$_2$ or biqO$_2$ [12]. Results on the luminescence of Eu(III) complexes with the dioxide derivatives have shown that the included central metal ion is better protected from interactions with water than in the case of the [Eu⊂bpy derivative]$^{3+}$ or [Eu⊂biq derivative]$^{3+}$ cryptate and that these complexes present a significant gain in light-conversion efficiency over earlier europium cryptates.

The sol–gel process is a potentially attractive means of synthesizing novel luminescent materials. The incorporation of lanthanide complexes, particularly europium(III) complexes, has been investigated in details [13–20]. Xerogels doped with Eu(III) complexes have shown substantially improved luminescence characteristics with respect to similar materials containing simple metal.

According to the theory of non-radiative transitions in lanthanide complexes [21–23], the non-radiative relaxation between various J states may occur by interaction of the electronic levels of the lanthanide ion with suitable vibrational modes of the environment. The efficiency of these processes depends on the energy gap between the ground and excited states and the vibrational energy of the oscillators [21, 22, 24]. When solvents containing O–H groups are co-ordinated to lantha-
Fig. 2. Molecular structures of the studied:
a) Eu(III) complexes (cryptates) and b) some co-ligands
nide ions, efficient non-radiative deactivations take place via vibronic coupling with the vibrational states of the O–H oscillators [25–27]. If the O–H oscillators are replaced by the low-frequency O–D oscillators, the vibronic deactivation pathway becomes much less efficient.

In order to reduce the non-radiative decay from the excited state of Eu(III) we tried to eliminate O–H oscillators in the short range, i.e. in the co-ordination environment of the central ion as well as in the long range, i.e. in the xerogel matrix. To realize the short-range approach we have tested several ligands for Eu(III) ion luminescence characteristics [19]. Among the ligands used, the best results (i.e. higher emission intensity and longer lifetime) shows the [biqO₂,2,2] cryptand, where biqO₂ is 3,3’-bisioquinoline-2,2’-dioxide (Fig. 2a, structure 1).

Luminescence intensity can be increased if the co-ordination sphere is completed additionally with co-ligands such as 1,10-phenanthroline (phen), 2,2’-bipyridine (bpy), triphenylphosphine oxide (TPPO) [19, 20] or other aromatic systems replacing water molecules from the first co-ordination sphere of Eu(III) (in Fig. 2b). To eliminate the O–H quenchers in the long range of Eu(III) surrounding, we used D₂O instead of H₂O as a reagent and deuterated methanol (MeOD) instead of MeOH as a solvent in the sol–gel procedure (Table 1) [19].

Table 1. Preparation procedure and its influence on the relative luminescence intensity Irel in the band maximum and luminescence lifetime τ of the cryptate 1 immobilized in [SiO₄/2+Si(CH₃)₂O₂/2] xerogel

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Catalyst</th>
<th>Relative intensity (I_rel)ᵃ</th>
<th>Lifetime τ/µsᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(OCH₃)₄+H₂O</td>
<td>CH₃OH</td>
<td>Acetic acid</td>
<td>0.36</td>
<td>574</td>
</tr>
<tr>
<td>Si(OCH₃)₄+D₂O</td>
<td>CH₃OH</td>
<td>Acetic acid</td>
<td>0.40</td>
<td>587</td>
</tr>
<tr>
<td>Si(OCH₃)₄+D₂O</td>
<td>CH₃OD</td>
<td>Acetic acid</td>
<td>1.0</td>
<td>608</td>
</tr>
</tbody>
</table>

ᵃλexc = 352 nm, λem = 622.6 nm
ᵇλexc = 394 nm, λem = 615.0 nm

Satisfactory results can also be obtained if the Eu(III) cryptate is encapsulated in methyl-modified silicate xerogel dried by means of (Me₃Si)₂NH agent and additionally at elevated temperature (Fig. 3) [20].

To improve luminescence properties, i.e. to enhance the emission intensity and lengthen the lifetime of the Eu(III) excited state in the materials, we recently analysed influence of ligands, co-ligands, anions and matrix materials on the Eu(III) luminescence characteristics in its complexes (cryptates). Such components of the matrix materials as oxide mixtures (titania–silica and zirconia–silica), polidimethylsiloxane (PDMS) as well as 3-glycidoxypropyl-modified oxide strongly influence on the luminescence activity. In general, Eu(III) ion should be isolated particularly from effec-
tively quenching O–H groups. On the other hand, O–H oscillators can be eliminated from the materials by a chemical agent and/or by drying in elevated temperature. Finally, the prepared materials with the Eu(III) cryptate were tested after exposure to UV radiation during a time period. Namely, there is a problem related to photodegradation of the organic antenna system in a luminescent material during excitation by high-energy quanta [28].

It is now evident that in such multiple systems as the luminescent materials with Eu(III) complexes prepared by the sol–gel procedure, their luminescence efficiency depends first of all on the presence of quenching O–H oscillators not only in the shortest distance from the central ion (first co-ordination sphere), but also in the long distance, i.e. in a matrix.

3. Recognition phases of the fluorescent chemical sensor

Luminescence is perhaps the most convenient and an easily detectable phenomenon which can be used to signal the occurrence of molecular events in a real time and space. Owing to fluorescence, it can be unambiguously detected even at very low concentrations and can be switched on and off (enhanced/quenched) through well-defined mechanisms, namely electron transfer or energy transfer [29].

Luminescent molecular receptors capable of sensing, a variety of analytes (H⁺ [30], s- and d-block metal ions [31, 32], anions [33] and amino acids [34]) have been developed. Most of them have been designed by following a two-component approach, i.e. by covalently linking a receptor subunit displaying selective affinity
Materials prepared by sol–gel method

63

towards the envisaged substrate to luminescent fragment (fluorophore) [35]. The sensing compounds incorporating a binding site, a fluorophore, and a mechanism for communication between the two are called fluorescent chemosensors (fluorosensors) [30, 36–40].

Recently, a number of investigations have been done on chelation-enhanced fluorescence [41] to make fluorosensors. In all these systems [35, 42], complexation by non-transition-metal ions or protonation of the amino groups present enhances the fluorescence quantum yield, as fluorescence quenching due to photoinduced electron transfer (PET) in the receptor molecule will no longer be operative. Transition-metal-based molecular fluorescent signalling systems are eagerly awaited [30, 39, 40, 43]. They would be useful not only at real-time and real-space monitoring devices in biology but also as versatile molecular switching devices. Transition-metal ions are known as effective fluorescence quenchers [44–46]. We present here the very rear systems [41] where transition metal ions Cu(II) and Ni(II), along with Co(II) and Zn(II) ions, cause enhancement of fluorescence. The signalling possibilities arise from the fact that the fluorophore–spacer–receptor system in the cation-free situation has been chosen such that its fluorescence is switched off by the PET process, as in Fig. 4 [47, 48].

![Fig. 4. Schematic representation of photoinduced processes in a 'fluor-spacer-receptor' signalling system: a) when cation-free, b) when cation-bound](image)

The PET process, in turn, can be suppressed by the entry of a cation into receptor by the cation-induced increase of the ionisation/oxidation potential of the receptor. At the simplest level this is an electric field effect. However, other ways of inhibiting electron transfer are available such as these three approaches: conformational
changes, local polarity modulations, and hydrogen bonding. Such a suppression of the PET process means that fluorescence becomes the dominant decay channel of the excited fluorophore [30]. Thus, cation entry is signalling by photon output when interrogated by excitation photons.

The fluorophore and the receptor units can be connected covalently or non-covalently. In the simplest covalently linked fluorophore–receptor systems, a \(-\text{(CH}_2\text{)}_n\) bridge may suffice to keep the two subunits together. However, the features of the spacer are not irrelevant, as they affect the signal transduction mechanism and, ultimately, determine signalling efficiency (Fig. 5).

Glass is traditionally the favourite support for optical sensors [49–51]. Special characteristics of glass, such as transparency, chemical inertness and inexpensive manufacturing procedures combined with the ability to geometric configurations as well as its physical characteristics, make it a most suitable support for diagnostic photometry. However, due to simpler immobilisation procedures, most sensor devices utilise polymeric supports for chemical recognition phases despite their inferior optical characteristics [52, 53].

About ten years ago, a novel immobilising method was introduced using the sol–gel polymerisation process [5, 54, 55]. Here, the dopants are incorporated in a dry gel (xerogel) at the early stages (or even before initiation) of the hydrolysis and polycondensation processes. Thus, when the xerogel is formed the dopants remain physically encapsulated within the microporous gel matrix but maintain their ability to interact with diffusing species [56–58]. Such materials have been used in a range of recognition phase configurations. These includes monoliths and deposited films, end-coated and side-coated optical
fibres and planar waveguides, and some novel configurations such as packed capillary tubes [59]. Some years ago Wolfbeis, Reisfeld and Oehme [60] have reviewed the principles of optical sensors based on the use of the sol–gel technique, in particular their fabrication, working principles, and various configurations.

In our paper [61–64], we discuss experiments with chemical recognition phases consisting of the prepared fluorosensors (bis-9-anthryl quadridentate derivatives, Fig. 6) immobilised in porous silica xerogel by the sol–gel procedure.

![Molecular structures of the bis-9-anthryl derivatives studied of the type Ant-R-Ant, where R is a quadridentate receptor spacer [63]](image)

In our paper [61–64], we discuss experiments with chemical recognition phases consisting of the prepared fluorosensors (bis-9-anthryl quadridentate derivatives, Fig. 6) immobilised in porous silica xerogel by the sol–gel procedure.

![Fluorescence emission spectra of the NOON fluorosensor: a) uncomplexed and complexed with: b) Co(II), c) Ni(II), d) Zn(II), and e) Cu(II) ions [63]](image)
The results show that the supramolecular system \(\text{Ant–N–O–O–N–Ant} \), where N and O are donor atoms in the receptor (spacer or ligating) group, is the most useful as a fluorosensor. This chemosensor is more sensitive for Cu(II) than for other transition metal ions, such as e.g. Co(II), Ni(II) and Zn(II) ions (Fig. 7).

Our experiments show that the sol–gel process is a versatile fabrication method to prepare chemical recognition phases of fluorescent chemical sensor. The recognition phases consist of silica as a matrix and bis-9-anthryl derivatives as fluorescent chemosensors for transition metal ions in aqueous solution.

Among the fluorosensors the molecular system \(\text{Ant–N–O–O–N–Ant} \), i.e. Ant–N–O–O–N–Ant, is the most promising as a component of the recognition phase in the fluorescent chemical sensor for Cu(II) ions.

4. Heterogeneous catalysts

The use of ligands-stabilized transition metal clusters on the one hand and of unprotected, bare nanoparticles on the other hand as homogeneous and heterogeneous catalysts, respectively, is extensively described in the literature [65]. In particular, supported metal particles are traditionally applied in industrial catalysis for many purposes. The catalytic behaviour of bare particles deposited on supports has been studied as a function of size and shape in a huge number of papers in the course of the last decades, whereas ligand-protected clusters are much less investigated as immobilized catalysts. The main interest was focused on the function of the ligands. Indeed, they can increase or reduce activity, however, it has been shown that the influence of ligands with respect to selectivity may also be of some interest. Schmid et al. [66, 67] have been able to show that ligand stabilized Pd clusters in the size range of 3–4 nm show very good activity and selectivity on various supports when they are used for the semihydrogenation of hex-2-yne to cis-hex-2-ene. The ligands consisted of variously substituted phenantrolines. It could be observed that, depending on the kind of substituent, e.g. alkyl groups of various lengths, the activities changed considerably, whereas the selectivity was in any case close to 100%.

On the other hand, in the case of very small Pd nanoparticles (1.5 nm) in a supported form with and without ligands to semihydrogenate hex-2-yne, it is observed that for the phenantroline-protected clusters the selectivity is only ca. 80–90%, whereas for the bare clusters it is 100%. From experience of Schmid et al. [68] this result could not be expected. Whatever the reason for that behaviour may be, it becomes clear that catalytic studies with clusters of definite size and environment are valuable materials to work out principles.

An important progress consists of the preparation of water-soluble nanoclusters using hydrophilic P- and N-donors as stabilizers [69–71]. Further miscellaneous agents have been used for this purpose [69, 72–83]. Colloidal metal systems stabilized either by surfactants or by solvents are very monodisperse and have been applied suc-
cessfully as precursors to heterogeneous catalysts [84–87]. Electron microscopy has confirmed that the discrete metal particles may be deposited onto supports without an unwanted agglomeration. This is a major prerequisite for size selective studies in heterogeneous catalysis.

In our experiments, we used with success amino- and thiol-trialkoxysilane derivatives as stabilizers of metal nanoparticles, such as Pd, Pt i Rh, in sol. In the next stage owing to the sol–gel process very monodisperse metal clusters supported on the organically modified xerogels are prepared. These pre-prepared nanometals stabilized by ligand amino or thiol groups may be used as easily accessible precursors for a new type of heterogeneous catalysts. These precursors may be optimized independent of the support by varying the particle size, composition, and structure of metallic system. Further, the coverage of the metal surface by various protective shells and intermediate layers, for example, oxygen or sulfur, may be used for modifications of the active component. This is visualized in Fig. 8.

The perfect protection of the nanometallic hydrosols by various alkoxide-derivatives allows the handling of the precursors even in concentrated alcoholic solution. Further, the use of amino- or thiol modified alkoxides as the protective shells around the metal core enables the efficient fixation the metal particles by covalent bonds on an oxide support. The supported metal particles are very resistant to agglomeration even under extreme conditions [88].

Acknowledgement

The presented studies were supported by the Polish Scientific Research Council (Grants T09A 106 20, 3 T09A 136 17 and DS-UG/8280-4-0091-0).

References

[65] For a summarizing review containing ca. 400 references see L.N. Lewis, Chem. Rev., 1993, 93, 813.

