Contents of Volume 28

No. 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.-H. Chen, W.-J. Wang, W.-G. Zhang, Structure and optical properties of (Alq₃)/Al₂O₃ ethanol colloids</td>
<td>15</td>
</tr>
<tr>
<td>T. Zaremba, D. Witkowska, Methods of manufacturing of potassium titanate fibres and whiskers. A review</td>
<td>25</td>
</tr>
<tr>
<td>D. W. Zhou, J.S. Liu, J. Zhang, Z.G. Huang, P. Peng, Electronic mechanism of dehydrogenation of the Mg–Ge mixture during milling under hydrogen</td>
<td>43</td>
</tr>
<tr>
<td>N. Suresh, S. Venkateswaran, S. Seetharamu, Influence of cenospheres of fly ash on the mechanical properties and wear of permanent moulded eutectic Al–Si alloys</td>
<td>55</td>
</tr>
<tr>
<td>W.Z. Nie, J. Li, X.H. Sheng, Tribological properties of oxidation modified carbon fibre–reinforced polyamide 6 composites</td>
<td>67</td>
</tr>
<tr>
<td>L. Z. Pei, H.S. Zhao, W. Tan, H.Y. Yu, Q.-F. Zhang, Fabrication of core-shell Ge–GeO₂ nanoneedles</td>
<td>77</td>
</tr>
<tr>
<td>S. Vatansever, F. Öksüzömer, S. Naci Koc, M. Somer, H. Deligöz, M. A. Gürkaynak, Fabrication of yttria stabilized zirconia nanoparticles by the reverse microemulsion method for SOFC applications</td>
<td>85</td>
</tr>
<tr>
<td>N. Dukstiene, L. Tatariskinaite, M. Andrulevicius, Characterization of electrochemically deposited thin Mo–O–C–Se film layers</td>
<td>93</td>
</tr>
<tr>
<td>C. Ludwig, M.F. Beug, K.-H. Küsters, Advances in flash memory devices</td>
<td>105</td>
</tr>
<tr>
<td>K. Henkel, B. Seime, I. Paloumpa, K. Müller, D. Schmeisser, Optimization of MFIS structures containing poly(vinylidene-fluoride trifluoroethylene) for non-volatile memory applications</td>
<td>117</td>
</tr>
<tr>
<td>V. Tyrpek, J. Poltjierová-Vejpravová, J. Plocek, D. Nižňanský, Preparation and characterization of SiO₂ microspheres doped with CoFe₂O₄ nanocrystals</td>
<td>129</td>
</tr>
<tr>
<td>K. Dehghani, A. Jafari, Finite element stress analysis of forging dies to improve their fatigue life</td>
<td>139</td>
</tr>
<tr>
<td>C. Wang, Z. Chen, Y. He, L. Li, D. Zhang, Raman scattering of ZnO films prepared by the laser molecular beam epitaxy</td>
<td>153</td>
</tr>
<tr>
<td>R. Sitek, J. Kamiński, P. Sallot, K.J. Kurzydłowski, Structure and properties of iron aluminate layers fabricated by the chemical vapour deposition on 316L steel</td>
<td>163</td>
</tr>
<tr>
<td>M. K. Halimah, W.M. Daud, H.A. A. Sidek, A.W. Zaidan, A.S. Zainal, Optical properties of ternary tellurite glasses</td>
<td>173</td>
</tr>
<tr>
<td>L. -P. Li, H.-Y. Zhang, J.-S. Pang, J. Lin, Fabrication and performance of carbon coated copper nanoneedles</td>
<td>181</td>
</tr>
<tr>
<td>R. I. Zhao, Y. Ma, J. Zhang, F. Li, W. Liu, Q. Cui, Nitrogen doped carbon nanotubes and curved lamellas produced via pyrolysis of melamine by direct current arc discharge</td>
<td>189</td>
</tr>
<tr>
<td>D. Pathak, R.K. Bedi, D. Kaur, Characterization of laser ablated AgInS₂ films</td>
<td>199</td>
</tr>
<tr>
<td>B. Wang, Y. Guo, G. Hu, On the design of biodegradable hydrogels both thermosensitive and pH sensitive</td>
<td>207</td>
</tr>
<tr>
<td>M. Banski, A. Podhorodecki, J. Misiewicz, Influence of sol-gel matrices on the optical excitation of europium ions</td>
<td>217</td>
</tr>
<tr>
<td>D. W. Zhou, J.S. Liu, S.H. Xu, G.Y. Chen, First principles study on the improved dehydrogenating properties of MgH₂ systems with metal fluoride</td>
<td>229</td>
</tr>
</tbody>
</table>
I. S. El-Hallag, Characterization of electrodeposited nanostructured macroporous cobalt films using polystyrene sphere templates ... 245
A. Chorfa, M. Hamidouche, M.A. Madjoubi, F. Petit, Mechanical behaviour of glass during cyclic instrumented indentation .. 255
S. Sen, P. Sahu, K. Prasad, A novel technique for the synthesis of CaCu3Ti4O12 ceramics .. 265
M. Jiang, X. Liu, H. Wang, J. Xu, Growth orientation transition and metal-like conductivity of Ti, Al co-doped ZnO films .. 273
K. Baltakys, E. Prichrockiene, Influence of CaO reactivity on the formation of low-base calcium silicate hydrates .. 295
S. Bindra Narang, S. Bahel, Influence of frequency variations on the dielectric properties of Sm doped Ba4La0.33Ti18O54 dielectric ceramics at various temperatures ... 305
B. K. Sharma, G. Misra, S.C. Goyal, Quantum computations for temperature variation of refractive indices of covalent semiconductors .. 313
K. Prasad, S. Bhagat, K. Amarnath, S.N. Choudhary, K.L. Yadav, Electrical conduction in Ba(Bi0.3Nb0.7)3O7 ceramics. Impedance spectroscopy analysis ... 317
G. Z. Shen, G.S. Cheng, Y. Cao, Z. Xu, Preparation and microwave absorption of M type ferrite nanoparticle composites .. 327
B. B. Jha, B.K. Mishra, B. Satpati, S.N. Ojha, Effect of thermal ageing on the evolution of microstructure and degradation of hardness of 2.25Cr-1Mo steel ... 335
S. Boucetta, T. Chihi, B. Ghebouli, M. Fatmi, First-principles study of the elastic and mechanical properties of Ni13Al under high pressure ... 347
J. Zhang, Y.N. Huang, C.G. Long, D.W. Zhou, J.S. Liu, Density functional study of Mg2FeH6 complex hydride ... 357

No. 2

E. Rusiński, P. Mozekko, A combined numerical-experimental method for determining the spatial distribution of a residual stress in a notch .. 393
M. R. Akbarpour, F. Nematzadeh, S. E. Hasemi Amiri, H. Rezaei, Effect of long duration intercritical heat treatment on the mechanical properties of AISI 4340 steel ... 401
M. Ardestani, H. Arabi, H. Razavizadeh, H. R. Rezaie, H. Mehrjoo, Synthesis of WC–20 wt. % Cu composite powders by co-precipitation and carburization processes ... 413
M. Golmohammad, Z. A. Nemati, M. A. Faghihi Sani, Synthesis and characterization of nanocrystalline barium strontium titanate ... 421
S. Ghosh, S. Dasgupta, Synthesis, characterization and properties of nanocrystalline perovskite cathode materials ... 427
K. K. Kaseem, D. Hanninger, A. Croxford, F. Phetteplace, Electrochemical studies on metal-hexacyanocobaltate(III) thin solid films in aqueous electrolytes ... 439
L. Marcinauskas, P. Valatkevičius, The effect of plasma torch power on the microstructure and phase composition of alumina coatings ... 451
Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, M. Tao, Large-area self assembled monolayers of silica microspheres formed by dip coating ... 467
Contents of Volume 28

Y. Wen, H. Li, G. Peng, Y. Yang, L. Liu, HRTEM nanostructural evolution of onion-like spheres in polyacrylonitrile fibres during stabilization and carbonization ... 479
A. K. Srivastava, B. C. Yadav, Humidity sensing properties of TiO$_2$–Sb$_2$O$_3$ nanocomposite 491
C. K. Kajdas, A. Kulczycki, K. J. Kurzydlowski, G. J. Molina, Activation energy of tribochemical and heterogeneous catalytic reactions .. . 523
J. Qi, G. Ning, Y. Zhao, M. Tian, Y. Xu, H. Hai, Synthesis and characterization of V$_2$O$_3$ microcrystal particles controlled by thermodynamic parameters ... 535
K. Faghihi, M. Hajibeygi, New flame-retardant and optically active poly(amide-imide)s based on N-trimellitylimido-L-amino acid and phosphine oxide moiety in the main chain: synthesis and characterization .. 545
A. Phuruangrat, T. Thongtem, S.I. Thongtem, Synthesis of nanocrystalline metal molybdates using cyclic microwave radiation .. 557
A. Abbasi, A. Reza Mahjoub, A. R. Badiei, A novel highly acidic sulfonic functionalized SBA-1 cubic mesoporous catalyst and its application in the esterification of palmitic acid .. 567
B. Żurowska, A. Białońska, A. Kotyński, J. Ochocki, Crystal structure and spectroscopic properties of [Zn(2-qmpe)Cl$_2$] compounds containing a diethyl(quinolin-2-ylmethyl)phosphonate ligand (2-qmpe) ... 573
S. Balaji, S. Shanmugan, D. Mutharasu, K. Ramanathan, Structural, morphological and electrochemical characterization of electron beam deposited Li$_{1+x}$Mn$_2$O$_4$ ($x = 0, 0.05$) thin films 583

No. 3

M. Răcuciu, D.E. Creangă, A. Airinei, D. Chicova, V. Bădescu, Synthesis and properties of magnetic nanoparticles coated with biocompatible compounds .. 609
A. Abbasi, A.R. Mahjoub, A.R. Badiei, Fast and easy preparation of a novel highly acidic sulfonic -functionalized SBA-1 cubic mesoporous catalyst and its application in the esterification of palmitic acid .. 617
B. Zielińska, E. Borowiak-Palen, R.J. Kalenczuk, A study on the synthesis, characterization, and photocatalytic activity of TiO$_2$ derived nanostructures ... 625
M. S. da Luz, A.D.A. Coelho, C.A.M. dos Santos, H.J. Izario Filho, A.J.S. Machado, Structural characterization and electrical resistance of the BaPb$_{1-x}$Bi$_x$O$_3$ system .. 639
S. Kanagesan, C. Kumar, R. Velmurugan, S. Jesurani, Sol-gel combustion synthesis of Bi$_{0.5}$Na$_{0.5}$TiO$_3$ –ZrO$_2$ ceramic composite ... 647
A. Wymysłowski, L. Dowhań, O. Wittler, R. Mrossko, R. Dudek, Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis 655
M. Li, F. Chen, Q. Shen, L. Zhang, Fabrication and thermal properties of Al$_2$TiO$_3$/Al$_2$O$_3$ composites ... 663
X. Tang, Y. Zhao, Q. Jiao, Y. Cao, A novel conversion of inert carbon nanotubes to highly dispersed fibres ... 671
J. K. Quamara, S.K. Mahna, S. Garg, Thermally stimulated depolarization current. Investigations of copolyesteramide (Vectra B 950) polymer liquid crystal ... 679
A. K. Zak, A. Jalaliian, S.M. Hosseini, A. Kompany, T. Shekofteh Narm, Effect of Y^{3+} and Nb^{5+} co-doping on dielectric and piezoelectric properties of PZT ceramics ... 703
W.-D. Xiang, Y.-X. Yang, J.-L. Zheng, L. Cao, H.-J. Ding, X.-N. Liu, Synthesis of mesoporous silica by cationic surfactant templating in various inorganic acid sources ... 709
K. Kolanek, M. Tallarida, D. Schmeisser, Atomic layer deposition of HfO_{2} investigated in situ by means of a noncontact atomic force microscopy .. 731
Y. Li, Y.-L. Zou, Morphology and characterization of cockloft-like ZnO/morin hybrid .. 741
B. Żurowska, U. Kalinowska-Lis, J. Ochocki, Coordination properties of diethyl (pyridyn-2-ylmethyl)phoshate ligand with chloride transition metal salts ... 749

No. 4

P. S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Impedance and modulus spectroscopy studies of Ba_{4}SrSmTi_{3}V_{7}O_{30} ceramics .. 763
H. Sahan, H. Göktepe, S. Patat, Cycling behaviour of barium doped LiMn_{2}O_{4} cathode materials for Li ion secondary batteries .. 773
W. Wang, Q.D. Ling, M.J. Lin, Q.H. Chen, A study of a block copolymer synthesized by RAFT polymerization containing carbazole groups and a europium complex .. 781
M. Sahin, H. Celikkan, A. Asan, M.L. Aksu, The effect of Congo red inhibitor on the corrosion of various steels in a 3.5% NaCl medium ... 795
P. Ou, G. Xu, C. Xu, Y. Zhang, X. Hou, G. Han, Synthesis and characterization of magnetite nanoparticles by a simple solvothermal method .. 817
Y. C. Chi, Y. Liou, Room temperature ferromagnetism in Si nanocaps on self-assembled glass beads 823
A. Yoffe, V. Shelukhin, Modification of 306 Edwards sputtering system for the reproducible fabrication of sensitive thin films .. 833
Author Index

Abbasi A., Mahjoub A.R., Badiei A.R., Fast and easy preparation of a novel highly acidic sulfonic-functionalized SBA-1 cubic mesoporous catalyst and its application in the esterification of palmitic acid 617/3

Abbasi A., Reza Mahjoub A., Badiei A.R., A novel highly acidic sulfonic functionalized SBA-1 cubic mesoporous catalyst and its application in the esterification of palmitic acid 565/2

Ahmed N. see Durrani S.K. 459/2

Airinei A. see Răucuciu M. 609/3

Akbarpour M.R., Nematzadeh F., Hasemi Amiri S.E., Rezaei H., Effect of long duration inter-critical heat treatment on the mechanical properties of AISI 4340 steel 401/2

Akhtar J. see Durrani S.K. 459/2

Aksu M.L. see Sahin M. 795/4

Amarnath K. see Prasad K. 317/1

Ambika N. see Kathalingam A. 513/2

Andrulevicius M. see Dukstiene N. 93/1

Arabi H. see Ardestani M. 413/2

Ardestani M., Arabi H., Razavizadeh H., Rezaie H.R., Mehrjoo H., Synthesis of WC–20 wt. % Cu composite powders by co-precipitation and carburization processes 413/2

Arefian N.A. see Kandjani A.E. 377/2

Asan A. see Sahin M. 795/4

Bădescu V. see Răucuciu M. 609/3

Badiei A.R. see Abbasi A. 565/2

Badiei A.R. see Abbasi A. 617/3

Bahel S. see Bindra Narang S. 305/1

Bakhshi F. see Eslami H. 5/1

Balaji S., Shanmugan S., Mutharasu D., Ramanathan K., Structural, morphological and electrochemical characterization of electron beam deposited Li_{1+x}Mn_2O_4 (x = 0, 0.05) thin films 583/2

Baltakys K., Pritchockiene E., Influence of CaO reactivity on the formation of low-base calcium silicate hydrates 295/1

Banski M., Podhorodecki A., Misiewicz J., Influence of sol-gel matrices on the optical excitation of europium ions 217/1

Bedi R.K. see Pathak D. 199/1

Beug M.F. see Ludwig C. 105/1

Bhagat S. see Prasad K. 317/1

Białońska A. see Żurowska B. 573/2

Bindra Narang S., Bahel S., Influence of frequency variations on the dielectric properties of Sm doped Ba_4La_{9.33}Ti_{18}O_{54} dielectric ceramics at various temperatures 305/1

Borowiak-Palen E. see Zielińska B. 625/3

Boucetta S., Chihi T., Ghebouli B., Fatmi M., First-principles study of the elastic and mechanical properties of Ni_3Al under high pressure 347/1

Burdyńska S. see Jedynińska M. 693/3

Cao L., Ding H.-J. see Xiang W.-D. 709/3

Cao Y. see Shen G.Z. 327/1

*Page number/Issue number.
Author Index

Cao Y. see Tang X. 671/3
Celikkan H. see Sahin M. 795/4
Chae Y.S. see Kathalingam A. 513/2
Chen D. see Ma G.Z. 595/2
Chen F. see Li M. 663/3
Chen G.Y. see Zhou D.W. 229/1
Chen L. see Wang Y. 467/2
Chen Q.H. see Wang W. 781/4
Chen Q.-H., Wang W.-J., Zhang W.-G., Structure and optical properties of (Alq_x)/Al_2O_3 ethanol colloids 15/1
Chen Z. see Wang C. 153/1
Chen Z.H. see Ma G.Z. 595/2
Cheng G.S. see Shen G.Z. 327/1
Chi Y.C., Liou Y., Room temperature ferromagnetism in Si nanocaps on self-assembled glass beads 823/4
Chicea D. see Racuciu M. 609/3
Chihi T. see Boucetta S. 347/1
Chorfa A., Hamidouche M., Madjoubi M.A., Petit F., Mechanical behaviour of glass during cyclic instrumented indentation 255/1
Choudhary R.N.P. see Sahoo P.S. 763/4
Choudhary S.N. see Prasad K. 317/1
Coelho A.D.A. see Luz da M.S. 639/3
Croxford A. see Kasem K.K. 439/2
Cui Q. see Zhao R.I. 189/1
Dasgupta S. see Ghosh S. 427/2
Daud W.M. see Halimah M.K. 173/1
Dehghani K., Jafari A., Finite element stress analysis of forging dies to improve their fatigue life 139/1
Deligöz H. see Vatansever S. 85/1
Diduszko R. see Jedynski M. 693/3
Dowhan Ł. see Wymysłowski A. 647/3
Dudek R. see Wymysłowski A. 647/3
Dukstiene N., Tatariskinaite L., Andrulevicius M., Characterization of electrochemically deposited thin Mo–O–Se film layers 93/1
Elanchezhiyan J. see Kathalingam A. 513/2
El-Hallag I.S., Characterization of electrodeposited nanostructured macroporous cobalt films using polystyrene sphere templates 245/1
Eslami H., Solati-Hashjin M., Tahiri M., Bakhshi F., Synthesis and characterization of nanocrystalline hydroxyapatite obtained by the wet chemical technique 5/1
Faghihi K., Hajibeysgi M., New flame-retardant and optically active poly(amide-imide)s based on N-trimellitylimido-L-amino acid and phosphine oxide moiety in the main chain: synthesis and characterization 545/2
Faghihi Sani M.A. see Golmohammad M. 421/2
Fatmi M. see Boucetta S. 347/1
Garg S. see Quamara J.K. 679/3
Ghebouli B. see Boucetta S. 347/1
Ghosh S., Dasgupta S., Synthesis, characterization and properties of nanocrystalline perovskite cathode materials 427/2
Göktepe H. see Sahan H. 773/4
Author Index

Golmohammad M., Nemati Z.A., Faghihi Sani M.A., Synthesis and characterization of nano-crystalline barium strontium titanate 421/2
Goyal S.C. see Sharma B.K. 313/1
Guo Q. see Wang Y. 467/2
Guo Y. see Wang B. 207/1
Gürkaynak M.A. see Vatansever S. 85/1
Hai H. see Qi J. 535/2
Hajibeygi M. see Faghihi K. 545/2
Halimah M.K., Daud W.M., Sidek H.A.A., Zaidan A.W., Zainal A.S., Optical properties of ternary tellurite glasses 173/1
Hamidouche M. see Chorfa A. 255/1
Han G. see Ou P. 817/4
Hanninger D. see Kasem K.K. 439/2
Hasemi Amiri S.E. see Akbarpour M.R. 401/2
He Y. see Wang C. 153/1
Henkel K., Seime B., Paloumpa I., Müller K., Schmeisser D., Optimization of MFIS structures containing poly(vinylidene-fluoride trifluoroethylene) for non-volatile memory applications 117/1
Hoffman J. see Jedyński M. 693/3
Hosseini S.M. see Zak A.K. 703/3
Hou X. see Ou P. 817/4
Hu G. see Wang B. 207/1
Huang Y.N. see Zhang J. 357/1
Huang Z.G. see Zaremba T. 43/1
Hussain M.A. see Durrani S.K. 459/2
Hussain N. see Durrani S.K. 459/2
Hussain S.Z. see Durrani S.K. 459/2
Izario Filho H.J. see Luz da M.S. 639/3
Jafari A. see Dehghani K. 139/1
Jalaliian A. see Zak A.K. 703/3
Jesurani S. see Kanagesan S. 647/3
Jha B.B., Mishra B.K., Satpati B., Ojha S.N., Effect of thermal ageing on the evolution of microstructure and degradation of hardness of 2.25Cr-1Mo steel 335/1
Jiang M., Liu X., Wang H., Xu J., Growth orientation transition and metal-like conductivity of Ti, Al co-doped ZnO films 273/1
Jiao Q. see Tang X. 671/3
Kajdas C.K., Kulczycki A., Kurzydłowski K.J., Molina G.J., Activation energy of tribochemical and heterogeneous catalytic reactions 523/2
Kalenczuk R.J. see Zielińska B. 625/3
Kalinowska-Lis U. see Żurowska B. 749/3
Kamiński J. see Sitek R. 163/1
Kanagesan S., Kumar C., Velmurugan R., Jesurani S., Sol-gel combustion synthesis of Bi$_{0.5}$Na$_{0.5}$TiO$_3$–ZrO$_2$ ceramic composite 647/3
Kasem K.K., Hanninger D., Croxford A., Phetteplace F., Electrochemical studies on metal-hexacyanocobaltate(III) thin solid films in aqueous electrolytes 439/2
Author Index

Kaur D. see Pathak D. 199/1
Kim M.R. see Kathalingam A. 513/2
Kolanek K., Tallarida M., Schmeisser D., Atomic layer deposition of HfO₂ investigated in situ by means of a noncontact atomic force microscopy 731/3
Kołodziejczak P. see Jedyński M. 693/3
Kompany A. see Zak A.K. 703/3
Kotyński A. see Żurowska B. 573/2
Kuleczynki A. see Kajdas C.K. 523/2
Kumar C. see Kanagesan S. 647/3
Kurzydłowski K.J. see Kajdas C.K. 523/2
Kurzydłowski K.J. see Sitek R. 163/1
Küsters K.-H. see Ludwig C. 105/1
Li F. see Zhao R.I. 189/1
Li H. see Wen Y. 479/2
Li J. see Nie W.Z. 67/1
Li L. see Wang C. 153/1
Li L.-P., Zhang H.-Y., Pang J.-S., Lin J., Fabrication and performance of carbon coated copper nanoparticles 181/1
Li M., Chen F., Shen Q., Zhang L., Fabrication and thermal properties of Al₂TiO₅/Al₂O₃ composites 663/3
Li W. see Ma G.Z. 595/2
Li Y., Zou Y.-L., Morphology and characterization of cockloft-like ZnO/morin hybrid 741/3
Lin J. see Li L.-P. 181/1
Lin L.W. see Zhang Y. 805/4
Lin M.J. see Wang W. 781/4
Ling Q.D. see Wang W. 781/4
Liou Y. see Chi Y.C. 823/4
Liu J.S. see Zaremba T. 43/1
Liu J.S. see Zhang J. 357/1
Liu J.S. see Zhou D.W. 229/1
Liu J.W. see Ma G.Z. 595/2
Liu L. see Wen Y. 479/2
Liu W. see Zhao R.I. 189/1
Liu X. see Jiang M. 273/1
Liu X.-N. see Xiang W.-D. 709/3
Long C.G. see Zhang J. 357/1
Ludwig C., Beug M.F., Küsters K.-H., Advances in flash memory devices 105/1
Ma G.Z., Chen D., Chen Z.H., Liu J.W., Li W., The effect of cryogenic treatment on the microstructure and mechanical properties of Cu₄₆Zr₄₆Al₈ bulk metallic glass matrix composites 595/2
Ma Y. see Zhao R.I. 189/1
Machado A.J.S. see Luz da M.S. 639/3
Madjoubi M.A. see Chorfa A. 255/1
Mahjoub A.R. see Abbasi A. 617/3
Mahna S.K. see Quamara J.K. 679/3
Marcinauskas L., Valatkevičius P., The effect of plasma torch power on the microstructure and phase composition of alumina coatings 451/2
Mehra R.M. see Rani S. 281/1
Mehrjoo H. see Ardestani M. 413/2
Mishra B.K. see Jha B.B. 335/1
Misiewicz J. see Bansi M. 217/1
Misra G. see Sharma B.K. 313/1
Moczko P. see Rusiński E. 393/2
Molina G.J. see Kajdas C.K. 523/2
Mościcki T. see Jedyński M. 693/3
Mrożek R. see Wymysłowski A. 647/3
Mroz W. see Jedyński M. 693/3
Müller K. see Henkel K. 117/1
Mutharasu D. see Balaji S. 583/2
Naci Koc S. see Vatansever S. 85/1
Nemati Z.A. see Golmohammad M. 421/2
Nematzadeh F. see Akbarpour M.R. 401/2
Nie W.Z., Li J., Sheng X.H., Tribological properties of oxidation modified carbon fibre-reinforced polyamide 6 composites 67/1
Ning G. see Qi J. 535/2
Nižňanský D. see Tyrpek V. 129/1
Ochocki J. see Żurowska B. 573/2
Ochicki J. see Żurowska B. 749/3
Ojha S.N. see Jha B.B. 351/1
Oksüzömer F. see Vatansever S. 85/1
Ou P., Xu G., Xu C., Zhang Y., Hou X., Han G., Synthesis and characterization of magnetite nanoparticles by a simple solvothermal method 817/4
Paloumpa I. see Henkel K. 117/1
Pang J.-S. see Li L.-P. 181/1
Panigrahi A. see Sahoo P.S. 763/4
Patat S. see Sahan H. 773/4
Pathak D., Bedi R.K., Kaur D., Characterization of laser ablated AgInSe2 films 199/1
Patri S.K. see Sahoo P.S. 763/4
Pei L.Z. see Zhang Y. 805/4
Pei L.Z., Zhao H.S., Tan W., Yu H.Y., Zhang Q.-F., Fabrication of core-shell Ge–GeO2 nanoneedles 77/1
Peng G. see Wen Y. 479/2
Peng P. see Zaremba T. 43/1
Petit F. see Chorfa A. 255/1
Phetteplace F. see Kasem K.K. 439/2
Phuruangrat A., Thongtem T., Thongtem S.I., Synthesis of nanocrystalline metal molybdates using cyclic microwave radiation 557/2
Plocek J. see Tyrpek V. 129/1
Podhorodecki A. see Bansi M. 217/1
Poltierová- Vejpravová J. see Tyrpek V. 129/1
Prasad K. see Sen S. 265/1
Prasad K., Bhagat S., Amarnath K., Choudhary S.N., Yadav K.L., Electrical conduction in Ba(Bi0.5Nb0.5)O3 ceramics. Impedance spectroscopy analysis 317/1
Prichockiene E. see Baltakys K. 295/1
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi J., Ning G., Zhao Y., Tian M., Xu Y., Hai H.</td>
<td>Synthesis and characterization of V₂O₃ microcrystal particles controlled by thermodynamic parameters</td>
<td>535/2</td>
</tr>
<tr>
<td>Quamara J.K., Mahna S.K., Garg S.</td>
<td>Thermally stimulated depolarization current. Investigations of copolyesteramide (Vectra B 950) polymer liquid crystal</td>
<td>679/3</td>
</tr>
<tr>
<td>Răcuciu M., Creangă D.E., Airinei A., Chică D., Bădescu V.</td>
<td>Synthesis and properties of magnetic nanoparticles coated with biocompatible compounds</td>
<td>609/3</td>
</tr>
<tr>
<td>Ramanathan K.</td>
<td>see Balaji S.</td>
<td>583/2</td>
</tr>
<tr>
<td>Rani S., Shishodia P.K., Mehra R.M.</td>
<td>Enhancement of photovoltaic performance of quasi-solid state dye sensitized solar cell with dispersion of a hole conducting agent</td>
<td>281/1</td>
</tr>
<tr>
<td>Razavizadeh H.</td>
<td>see Ardestani M.</td>
<td>413/2</td>
</tr>
<tr>
<td>Reza Mahjoub A. see Abbasi A.</td>
<td>565/2</td>
<td></td>
</tr>
<tr>
<td>Rezaie H.R. see Ardestani M.</td>
<td>413/2</td>
<td></td>
</tr>
<tr>
<td>Rezaei H. see Akbarpour M.R.</td>
<td>401/2</td>
<td></td>
</tr>
<tr>
<td>Rhee J.K. see Kathalingam A.</td>
<td>513/2</td>
<td></td>
</tr>
<tr>
<td>Rusinński E., Moczko P.</td>
<td>A combined numerical-experimental method for determining the spatial distribution of a residual stress in a notch</td>
<td>393/2</td>
</tr>
<tr>
<td>Saeed A. see Durrani S.K.</td>
<td>459/2</td>
<td></td>
</tr>
<tr>
<td>Sahar H., Göktepe H., Patat S.</td>
<td>Cycling behaviour of barium doped LiMn₂O₄ cathode materials for Li secondary batteries</td>
<td>773/4</td>
</tr>
<tr>
<td>Sahin M., Celikkan H., Asan A., Aksu M.L.</td>
<td>The effect of Congo red inhibitor on the corrosion of various steels in a 3.5% NaCl medium</td>
<td>795/4</td>
</tr>
<tr>
<td>Sahoo P.S., Panigrahi A., Patri S.K., Choudhary R.N.P.</td>
<td>Impedance and modulus spectroscopy studies of Ba₃SrSmTi₃V₇O₃₀ ceramics</td>
<td>763/4</td>
</tr>
<tr>
<td>Sahu P. see Sen S.</td>
<td>265/1</td>
<td></td>
</tr>
<tr>
<td>Salehpoor P. see Kandjani A.E.</td>
<td>377/2</td>
<td></td>
</tr>
<tr>
<td>Sallot P. see Sitek R.</td>
<td>163/1</td>
<td></td>
</tr>
<tr>
<td>Santos dos C.A.M. see Luz da M.S.</td>
<td>639/3</td>
<td></td>
</tr>
<tr>
<td>Satpati B. see Jha B.B.</td>
<td>335/1</td>
<td></td>
</tr>
<tr>
<td>Schmeisser D. see Henkel K.</td>
<td>117/1</td>
<td></td>
</tr>
<tr>
<td>Schmeisser D. see Kolanek K.</td>
<td>731/3</td>
<td></td>
</tr>
<tr>
<td>Seetharamu S. see Suresh N.</td>
<td>55/1</td>
<td></td>
</tr>
<tr>
<td>Seime B. see Henkel K.</td>
<td>117/1</td>
<td></td>
</tr>
<tr>
<td>Sen S., Sahu P., Prasad K.</td>
<td>A novel technique for the synthesis of CaCu₃Ti₅O₁₂ ceramics</td>
<td>265/1</td>
</tr>
<tr>
<td>Shanmugan S. see Balaji S.</td>
<td>583/2</td>
<td></td>
</tr>
<tr>
<td>Sharma B.K., Misra G., Goyal S.C.</td>
<td>Quantum computations for temperature variation of refractive indices of covalent semiconductors</td>
<td>313/1</td>
</tr>
<tr>
<td>Shekofteh Narm T. see Zak A.K.</td>
<td>703/3</td>
<td></td>
</tr>
<tr>
<td>Shelukhin V. see Yoffe A.</td>
<td>833/4</td>
<td></td>
</tr>
<tr>
<td>Shen G.Z., Cheng G.S., Cao Y., Xu Z.</td>
<td>Preparation and microwave absorption of M type ferrite nanoparticle composites</td>
<td>327/1</td>
</tr>
<tr>
<td>Shen Q. see Li M.</td>
<td>663/3</td>
<td></td>
</tr>
<tr>
<td>Sheng X.H. see Lin X.F.</td>
<td>503/2</td>
<td></td>
</tr>
<tr>
<td>Sheng X.H. see Nie W.Z.</td>
<td>67/1</td>
<td></td>
</tr>
<tr>
<td>Shishodia P.K. see Rani S.</td>
<td>281/1</td>
<td></td>
</tr>
<tr>
<td>Sidek H.A.A. see Halimah M.K.</td>
<td>173/1</td>
<td></td>
</tr>
<tr>
<td>Sitotk, Kamiński J., Sallot P., Kurzydłowski K.J.</td>
<td>Structure and properties of iron aluminide layers fabricated by the chemical vapour deposition on 316L steel</td>
<td>163/1</td>
</tr>
<tr>
<td>Solati-Hashjin M. see Eslami H.</td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>Somer M. see Vatansever S.</td>
<td>85/1</td>
<td></td>
</tr>
<tr>
<td>Srivastava A.K., Yadav B.C.</td>
<td>Humidity sensing properties of TiO₂–Sb₂O₃ nanocomposite</td>
<td>491/2</td>
</tr>
</tbody>
</table>
Suresh N., Venkateswaran S., Seetharamu S., Influence of cenospheres of fly ash on the mechanical properties and wear of permanent moulded eutectic Al–Si alloys 55/1
Szymański Z. see Jedyński M. 693/3
Tabriz M.F. see Kandjani A.E. 377/2
Tahiri M. see Esfahani H. 5/1
Tallarida M. see Kolanek K. 731/3
Tan W. see Pei L.Z. 77/1
Tang X., Zhao Y., Jiao Q., Cao Y., A novel conversion of inert carbon nanotubes to highly dispersed fibres 671/3
Tang Y.H. see Zhang Y. 805/4
Tao M. see Wang Y. 467/2
Tatariskinaite L. see Dukstiene N. 93/1
Thongtem S.I. see Phuruangrat A. 557/2
Thongtem T. see Phuruangrat A. 557/2
Tian M. see Qi J. 535/2
Tyrpek V., Poltirová-Veipravová J., Plocek J., Nižňanský D., Preparation and characterization of SiO₂ microspheres doped with CoFe₂O₄ nanocrystals 129/1
Vaezi M.R. see Kandjani A.E. 377/2
Valatkevičius P. see Marcinauskas L. 451/2
Vatansy S., Öksüzümer F., Naci Koc S., Somer M., Deligöz, H. Gürkaynak M.A., Fabrication of yttria stabilized zirconia nanoparticles by the reverse microemulsion method for SOFC applications 85/1
Velmarugan R. see Kanagesan S. 647/3
Venkateswaran S. see Suresh N. 55/1
Wang B., Guo Y., Hu G., On the design of biodegradable hydrogels both thermosensitive and pH sensitive 207/1
Wang C., Chen Z., He Y., Li L., Zhang D., Raman scattering of ZnO films prepared by the laser molecular beam epitaxy 153/1
Wang H. see Jiang M. 273/1
Wang W., Ling Q.D., Lin M.J., Chen Q.H., A study of a block copolymer synthesized by RAFT polymerization containing carbazole groups and a europium complex 781/4
Wang W.-J. see Chen Q.-H. 15/1
Wang Y., Chen L., Yang H., Guo Q., Zhou W., Tao M., Large-area self assembled monolayers of silica microspheres formed by dip coating 467/2
Wen Y., Li H., Peng G., Yang Y., Liu L., HRTEM nanostructural evolution of onion-like spheres in polyacrylonitrile fibres during stabilization and carbonization 479/2
Witowska D. see Zaremba T. 25/1
Wittler O. see Wymysłowski A. 647/3
Wymysłowski A., Dowhań J., Wittler O., Mrossko R., Dudek R., Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis 655/3
Xiang W.-D., Yang Y.-X., Zheng J.-L., Cao L., Ding H.-J., Liu X.-N., Synthesis of mesoporous silica by cationic surfactant templating in various inorganic acid sources 709/3
Xu C. see Ou P. 817/4
Xu G. see Ou P. 817/4
Xu J. see Jiang M. 273/1
Xu S.H. see Zhou D.W. 229/1
Xu Y. see Qi J. 535/2
Xu Z. see Shen G.Z. 327/1
Yadav B.C. see Srivastava A.K. 491/2
Yadav K.L. see Prasad K. 317/1
Yang H. see Wang Y. 467/2
Yang Y. see Wen Y. 479/2
Yang Y.-X. see Xiang W.-D. 709/3
Yoffe A., Shelukhin V., Modification of 306 Edwards sputtering system for the reproducible fabrication of sensitive thin films 833/4
Yu H.Y. see Pei L.Z. 77/1
Zaidan A.W. see Halimah M.K. 173/1
Zainal A.S. see Halimah M.K. 173/1
Zak A.K., Jalaliian A., Hosseini S.M., Kompany A., Shekofteh Narm T., Effect of Y$^{3+}$ and Nb$^{5+}$ co-doping on dielectric and piezoelectric properties of PZT ceramics 703/3
Zaremba T., Witkowska D., Methods of manufacturing of potassium titanate fibres and whiskers. A review 25/1
Zhang D. see Wang C. 153/1
Zhang E.L. see Zhang Y. 805/4
Zhang H.-Y. see Li L.-P. 181/1
Zhang J. see Zaremba T. 43/1
Zhang J. see Zhao R.I. 189/1
Zhang J.Q. see Lin X.F. 503/2
Zhang L. see Li M. 663/3
Zhang Q.-F. see Pei L.Z. 77/1
Zhang W.-G. see Chen Q.-H. 15/1
Zhang Y. see Ou P. 817/4
Zhang Y., Tang Y.H., Zhang E.L., Lin L.W., Pei L.Z., Preparation of Ni/MgO catalysts for carbon nanofibres by a self-propagating low temperature combustion process 805/4
Zhao H.S. see Pei L.Z. 77/1
Zhao R.I., Ma Y., Zhang J., Li F., Liu W., Cui Q., Nitrogen doped carbon nanotubes and curved lamellas produced via pyrolysis of melamine by direct current arc discharge 189/1
Zhao Y. see Qi J. 535/2
Zhao Y. see Tang X. 671/3
Zheng J.-L. see Xiang W.-D. 709/3
Zhou D.W. see Zhang J. 357/1
Zhou D.W., Liu J.S., Xu S.H., Chen G.Y., First principles study on the improved dehydrogenating properties of MgH$_2$ systems with metal fluorides 229/1
Zhou D.W., Liu J.S., Zhang J., Huang Z.G., Peng P., Electronic mechanism of dehydrogenation of the Mg–Ge mixture during milling under hydrogen 43/1
Zhou R.M. see Lin X.F. 503/2
Zhou W. see Wang Y. 467/2
Zielińska B., Borowiak-Palen E., Kalenczuk R.J., A study on the synthesis, characterization, and photocatalytic activity of TiO$_2$ derived nanostructures 625/3
Zou Y.-L. see Li Y. 741/3
Żurowska B., Białońska A., Kotyński A., Ochocki J., Crystal structure and spectroscopic properties of [Zn(2-qmpe)Cl$_2$] compounds containing a diethyl(quinolin-2-ylmethyl)phosphonate ligand (2-qmpe) 573/2
Żurowska B., Kalinowska-Lis U., Ochocki J., Coordination properties of diethyl (pyridyn-2 -ylmethyl)phoshatoid ligand with chloride transition metal salts 749/3
Keyword Index*

ac conductivity 317/1 charge trapping 105/1
acid source 709/3 chemical bath deposition 513/2
acidic anions 709/3 chemical synthesis 85/1, 427/2, 535/2
adsorption 491/2 chronoamperometry 245/1
advanced oxidation process 377/2 cobalt ferrite 129/1
AFM 647/3 cockloft 741/3
Al2O3 451/2 composite 647/3
Al2TiO5/Al2O3 composites 663/3 conduction mechanism 317/1
alkaline earth metal molybdate 557/2 Congo red 795/4
alloy steels 795/4 controlled polymerization 781/4
(A1q)/Al2O3 nanoparticles 15/1 copper nanoparticles 181/1
amorphous matrix 217/1 corrosion testing 795/4
arc discharge 189/1 cryogenic treatment (CT) 595/2
artificial neural network (ANN) 377/2 crystal structure 573/2
atomic force microscopy 731/3 Cu2O 503/2
atomic layer deposition 731/3 Cu46Zr46Al8 glassy matrix composite 595/2
austenitic stainless steel 163/1 cubic mesoporous silica 565/2, 617/3
Ba doping 773/4 cycle life 773/4
Ba(Bi0.5Nb0.5)O3 317/1 cyclic microwave-assisted synthesis 557/2
bainite 401/2
d core effect 313/1
biodegradable hydrogel 207/1 deformation measurements 393/2
biodiesel 565/2, 617/3 dehydrogenating properties 229/1
biomaterials 693/3 density 173/1
block copolymer 781/4 density functional theory 229/1, 357/1
dielectric loss 305/1
calcium silicate hydrate 295/1 dielectric properties 703/3
CaO reactivity 295/1 die-life improvement 139/1
carbon arc discharge 181/1 dip coating 467/2
carbon coated 181/1 direct band gap materials 199/1
carbon fibres 327/1, 479/2 disk 741/3
carbon nanofibres 671/3 dispersed CuI 281/1
carbon nanotubes 189/1, 671/3 double patterning 105/1
carburation 413/2 dual phase steels 401/2
catalyst 523/2
cenospheres 55/1 Edwards sputtering 833/4
ceramics 305/1, 317/1 EIS 795/4
CF/PA6 composite 67/1 elastic properties 347/1
characterization methods 671/3 electocatalysis 439/2
characterizations 77/1 electric permittivity 647/3
charge transfer 217/1 electrical conductivity 427/2, 639/3

*Page number/Issue number.
<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrical properties</td>
<td>763/4</td>
</tr>
<tr>
<td>electrochemical deposition</td>
<td>245/1</td>
</tr>
<tr>
<td>electron beam evaporation</td>
<td>583/2</td>
</tr>
<tr>
<td>electron beam irradiation</td>
<td>503/2</td>
</tr>
<tr>
<td>electron microscopy</td>
<td>85/1</td>
</tr>
<tr>
<td>electronic materials</td>
<td>427/2</td>
</tr>
<tr>
<td>electronic structure</td>
<td>43/1, 357/1</td>
</tr>
<tr>
<td>enthalpy of formation</td>
<td>357/1</td>
</tr>
<tr>
<td>erase saturation</td>
<td>105/1</td>
</tr>
<tr>
<td>erosion resistance to molten Al</td>
<td>663/3</td>
</tr>
<tr>
<td>esterification</td>
<td>565/2, 617/3</td>
</tr>
<tr>
<td>ethanol colloids</td>
<td>15/1</td>
</tr>
<tr>
<td>ethylene glycol</td>
<td>817/4</td>
</tr>
<tr>
<td>europium</td>
<td>217/1</td>
</tr>
<tr>
<td>europium complex</td>
<td>781/4</td>
</tr>
<tr>
<td>excitation mechanism</td>
<td>217/1</td>
</tr>
<tr>
<td>exciton Bohr radius</td>
<td>823/4</td>
</tr>
<tr>
<td>extrusion</td>
<td>139/1</td>
</tr>
<tr>
<td>fatigue crack propagation</td>
<td>255/1</td>
</tr>
<tr>
<td>fatigue fracture</td>
<td>139/1</td>
</tr>
<tr>
<td>Fe3O4 nanoparticles</td>
<td>817/4</td>
</tr>
<tr>
<td>FeAl</td>
<td>163/1</td>
</tr>
<tr>
<td>FeFET</td>
<td>117/1</td>
</tr>
<tr>
<td>ferrite nanoparticles</td>
<td>327/1</td>
</tr>
<tr>
<td>ferrite</td>
<td>401/2</td>
</tr>
<tr>
<td>ferromagnetism</td>
<td>823/4</td>
</tr>
<tr>
<td>FESEM</td>
<td>199/1</td>
</tr>
<tr>
<td>fibres</td>
<td>25/1</td>
</tr>
<tr>
<td>finite element method</td>
<td>393/2, 655/3</td>
</tr>
<tr>
<td>first-principles calculation</td>
<td>43/1</td>
</tr>
<tr>
<td>flame retardant</td>
<td>545/2</td>
</tr>
<tr>
<td>flash</td>
<td>105/1</td>
</tr>
<tr>
<td>fly ash</td>
<td>55/1</td>
</tr>
<tr>
<td>forging</td>
<td>139/1</td>
</tr>
<tr>
<td>fragmentation chain transfer</td>
<td>78/1</td>
</tr>
<tr>
<td>FTIR spectra</td>
<td>609/3, 647/3, 671/3</td>
</tr>
<tr>
<td>Ge–GeO2 nanoneedles</td>
<td>77/1</td>
</tr>
<tr>
<td>glass</td>
<td>255/1</td>
</tr>
<tr>
<td>glycine nitrate method</td>
<td>773/4</td>
</tr>
<tr>
<td>growth-orientation transition</td>
<td>273/1</td>
</tr>
<tr>
<td>gyrolite</td>
<td>295/1</td>
</tr>
<tr>
<td>hardening degradation</td>
<td>335/1</td>
</tr>
<tr>
<td>hardness</td>
<td>255/1</td>
</tr>
<tr>
<td>heat of formation</td>
<td>43/1</td>
</tr>
<tr>
<td>heterogeneous photocatalyst</td>
<td>377/2</td>
</tr>
<tr>
<td>heterojunction</td>
<td>199/1</td>
</tr>
<tr>
<td>hexacyanocobaltate</td>
<td>439/2</td>
</tr>
<tr>
<td>high resolution transmission</td>
<td>479/2</td>
</tr>
<tr>
<td>high workfunction gate</td>
<td>105/1</td>
</tr>
<tr>
<td>high-k dielectric</td>
<td>731/3</td>
</tr>
<tr>
<td>high-k dielectric</td>
<td>105/1</td>
</tr>
<tr>
<td>hopping model</td>
<td>317/1</td>
</tr>
<tr>
<td>humidity</td>
<td>491/2</td>
</tr>
<tr>
<td>hydrogen storage materials</td>
<td>357/1</td>
</tr>
<tr>
<td>hydrothermal deposition</td>
<td>77/1</td>
</tr>
<tr>
<td>hydroxyapatite</td>
<td>5/1, 693/3</td>
</tr>
<tr>
<td>inhibit</td>
<td>795/4</td>
</tr>
<tr>
<td>interfacial adhesion</td>
<td>67/1</td>
</tr>
<tr>
<td>intermetallics</td>
<td>163/1, 347/1</td>
</tr>
<tr>
<td>ionic conductivity</td>
<td>85/1</td>
</tr>
<tr>
<td>iron aluminides</td>
<td>163/1</td>
</tr>
<tr>
<td>laser molecular beam epitaxy</td>
<td>153/1</td>
</tr>
<tr>
<td>layered CuI</td>
<td>281/1</td>
</tr>
<tr>
<td>light scattering anisotropy</td>
<td>609/3</td>
</tr>
<tr>
<td>machinable glass</td>
<td>459/2</td>
</tr>
<tr>
<td>macroporous films</td>
<td>245/1</td>
</tr>
<tr>
<td>magnesium aluminum silicate</td>
<td>459/2</td>
</tr>
<tr>
<td>magnetic nanoparticles</td>
<td>609/3</td>
</tr>
<tr>
<td>magnetic properties</td>
<td>245/1, 609/3, 817/4</td>
</tr>
<tr>
<td>magnetism</td>
<td>749/3</td>
</tr>
<tr>
<td>mechanical properties</td>
<td>55/1, 401/2, 595/2</td>
</tr>
<tr>
<td>mesoporous silica</td>
<td>709/3</td>
</tr>
<tr>
<td>metal matrix composites</td>
<td>55/1</td>
</tr>
<tr>
<td>metal-like conductivity</td>
<td>273/1</td>
</tr>
<tr>
<td>MFIS</td>
<td>117/1</td>
</tr>
<tr>
<td>Mg–Ge mixture</td>
<td>43/1</td>
</tr>
<tr>
<td>MgH2</td>
<td>229/1</td>
</tr>
<tr>
<td>microemulsion</td>
<td>129/1</td>
</tr>
<tr>
<td>microemulsion</td>
<td>129/1</td>
</tr>
<tr>
<td>microemulsion</td>
<td>129/1</td>
</tr>
<tr>
<td>microstructure</td>
<td>335/1, 663/3</td>
</tr>
<tr>
<td>microstructure evolution</td>
<td>595/2</td>
</tr>
<tr>
<td>microwave absorption</td>
<td>327/1</td>
</tr>
<tr>
<td>microwave synthesis</td>
<td>583/2</td>
</tr>
<tr>
<td>modified electrode</td>
<td>439/2</td>
</tr>
<tr>
<td>molybdenum oxides and hydroxides</td>
<td>93/1</td>
</tr>
<tr>
<td>morphology</td>
<td>741/3</td>
</tr>
<tr>
<td>modified electrode</td>
<td>439/2</td>
</tr>
<tr>
<td>modified electrode</td>
<td>439/2</td>
</tr>
<tr>
<td>molybdenum oxides and hydroxides</td>
<td>93/1</td>
</tr>
<tr>
<td>morphology</td>
<td>741/3</td>
</tr>
<tr>
<td>morphology</td>
<td>741/3</td>
</tr>
<tr>
<td>morphology</td>
<td>741/3</td>
</tr>
<tr>
<td>morphology</td>
<td>93/1</td>
</tr>
<tr>
<td>2.25Cr-1Mo steel</td>
<td>335/1</td>
</tr>
<tr>
<td>N,O-donor ligand</td>
<td>749/3</td>
</tr>
</tbody>
</table>
Keyword Index

nanocomposite 129/1, 491/2
nanocrystalline material 5/1, 265/1, 421/2 SBA-1 565/2, 617/3
nanocrystalline semiconductor 513/2 scanning electron microscopy 535/2
nanoindentation 655/3 scheelite structure 557/2
nanosphere lithography 823/4 selenium 93/1
nanostructures 625/3 self assembled monolayer 467/2
Ni/MgO catalyst 805/4 self-propagating combustion 805/4
non-volatile memory 105/1, 117/1 SEM 265/1, 763/4

onion-like sphere 479/2 silica microsphere 467/2
optical band gap 15/1, 93/1 silicon wafers 199/1
optical properties 15/1, 93/1 single fibre pull-out 67/1
optical refractive index 313/1 sol-gel combustion 647/3
oxidation resistance 181/1 sol-gel method 129/1, 327/1, 421/2, 805/4
oxides 625/3 solution growth 513/2
ozone 67/1 solvothermal process 817/4

palmitic acid 565/2, 617/3 spectroscopy 749/3
particle size distribution 459/2 stress analysis 255/1
pH sensitivity 207/1 structural properties 347/1
phosphonic acid ester N,O-donor ligand 573/2 structure 15/1
photodegradation 503/2 superconducting clusters 639/3
photoluminescence 217/1 superconductivity 639/3
piezoelectric properties 703/3 synthesis conditions 709/3
plasma sprayed coating 451/2 synthesis 5/1
plasma torch 451/2
poly(amide-imide) 545/2 TANOS 105/1
poly(ethylene glycol) 503/2 tellurite glasses 173/1
polycondensation 545/2 TEM analysis 609/3
polymer liquid crystal 679/3 temperature coefficient
polystyrene latex 245/1 temperature of resonant frequency 305/1
potassium titanate 25/1 temperature dependence 313/1
precipitation 5/1 temperature sensitivity 207/1
pre-stress 139/1 thermal ageing 335/1
production 25/1 thermal expansion ratio 663/3
pulse laser ablation 15/1, 199/1 thermally stimulated
pulsed laser deposition 693/3 depolarization current 679/3
P(VDF-TrFE) 117/1 thermodynamic parameters 535/2
pyrolytic carbon 189/1 thermogravimetry 413/2
PZT ceramics 703/3 thin film 439/2, 655/3, 833/4

thin film electrodeposition 93/1
quantum confinement 823/4 Ti, Al co-doped 273/1
titania 491/2
Raman scattering 153/1 1.13 nm tobermorite 295/1
reduction 413/2 transition metal complexes 749/3
Reitveld analysis 265/1 tribochemical reaction 523/2
relative permittivity 305/1 triboemission 523/2
residual stress 393/2 tunnelling effects 823/4
resistance 491/2
reversible addition 781/4 Urbach energy 173/1
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page</th>
<th>Related Keywords</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV–VIS absorbance</td>
<td>609/3</td>
<td>X-ray diffraction</td>
<td>153/1, 427/2, 535/2, 763/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XRD patterns</td>
<td>639/3</td>
</tr>
<tr>
<td>vacuum annealing</td>
<td>273/1</td>
<td>XRD</td>
<td>265/1, 647/3</td>
</tr>
<tr>
<td>vacuum system</td>
<td>833/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vanadium oxides</td>
<td>535/2</td>
<td>yttria stabilized zirconia</td>
<td>85/1</td>
</tr>
<tr>
<td>Vectra B</td>
<td>679/3</td>
<td>zinc oxide</td>
<td>513/2, 741/3</td>
</tr>
<tr>
<td>WC-Cu composites</td>
<td>413/2</td>
<td>Zn(II)</td>
<td>573/2</td>
</tr>
<tr>
<td>wear</td>
<td>55/1</td>
<td>ZnO compact layer</td>
<td>281/1</td>
</tr>
<tr>
<td>whiskers</td>
<td>25/1</td>
<td>ZnO DSSC</td>
<td>281/1</td>
</tr>
<tr>
<td>work hardening</td>
<td>401/2</td>
<td>ZnO films</td>
<td>153/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZnO thin film</td>
<td>273/1</td>
</tr>
<tr>
<td>XPS</td>
<td>93/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>